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About the Next Generation Carbon-Free Electricity Procurement Activation Guide 

This guide is meant as a supplementary reader to the Clean Energy Buyers Institute’s brief on applying 
the consequential emissions framework for emissions-based energy procurement. This guide is intended 
to help analysts and decision-makers identify sources of marginal emissions data, understand how they 
are calculated, and weigh the strengths and limitations of using these data. The first section describes 
the different types of data sources and summarizes some of the most widely available sources of data. 
The second section provides an overview of the methodologies used to estimate marginal emissions 
factors. The third section summarizes several considerations that should be kept in mind when using pre-
calculated marginal emissions factors. The final section provides detailed information about each source 
of marginal emissions factor data identified in section 1. 



Although marginal emissions factors (MEFs) 
have been calculated for over two decades in 
academic literature, such data were typically 
developed for the context of a specific study and 
are not applicable for general use in business 
decision-making. More recently, however, a 
growing number of both public and proprietary 
sources of marginal emissions data have been 
developed to aid in decision-making. This section 
provides an overview of most of the more widely 
used sources of MEFs and is supplemented by 
a more detailed overview of each data source in 
the appendix. This information is provided not to 
rate or rank these data sources, but rather to help 
the reader better understand the differences 
between each source and the types of decisions 
to which each source is tailored. 

There are four major types of sources of 
MEF data: academia, commercial products, 
government sources, and grid operators. 
Academic estimates are generally peer-
reviewed with documented methodologies 
and assumptions, but they are typically created 
for historical analysis of a specific use case and 
generally are not going to be relevant for general 
decision-making. However, the methodologies 
developed in academic literature have often 
been adapted for use in commercial and public 
estimates. Public sources are provided by 
government agencies, such as the Environmental 
Protection Agency (EPA) or Department of 
Energy, and provide free access to the data with 
generally well-documented methodologies and 
assumptions. Many of these government sources, 
such as the EPA’s eGRID database or AVERT tool, 
have been around for decades. Commercial data 
products are typically only available behind a 
paywall and often use proprietary and black-box 
methods. Recently, some independent system 

operators (ISOs) have started directly providing 
historical marginal emission rate data, which may 
more accurately identify the marginal generators 
in specific markets but may not necessarily 
represent the “true” consequential impact of a 
specific decision. 

These data sources typically consist of both 
a data layer, which includes the MEF, and 
a software or feature layer, which includes 
applications and interfaces designed to help 
a user interact with, apply, and interpret the 
data. Selecting marginal emissions data is 
analogous to shopping for cars: different vehicles 
are built for different purposes (like pickup 
trucks or sedans). Each car is going to have 
different technology under the hood and will 
have different features that affect the quality of 
the drive, but any car of the same type should 
be able to allow you to arrive at the intended 
destination. Likewise, each MEF will be built 
for a slightly different purpose, have a different 
methodology and technical approach, and will 
have different features in its software layer, but 
all of them (if calculated accurately and used 
appropriately) should allow you to arrive at the 
same decarbonization decision. However, one 
challenge that the carbon data industry must 
overcome is the lack of standardization of the 
data layer, which means that today, in some cases 
analogous MEFs from different sources may 
point toward different optimal emissions-based 
decisions. 

Table 1 summarizes the data sources that are 
described in more detail in the appendix. Most 
of these sources provide operating or short-
run marginal emission rates, while only a single 
source provides long-run marginal emission 
rates.

SOURCES OF MARGINAL EMISSIONS 
FACTORS
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TABLE 1: 
Overview of the major sources of MEFs. More details about each data source can be found in the appendix.

MEF TYPE SOURCE CATEGORY METHOD  
APPROACH METHODOLOGY GEOGRAPHIC 

COVERAGE

Operating PJM ISO Operator-reported Proprietary PJM

Operating REsurety Commercial Statistical 

dispatch

Proprietary ERCOT

Operating SGIP 

Signal

Government LMP-based Public California

Operating Carbonara Commercial Operator-reported Proprietary Contiguous 

U.S.

Short-run Electricity 

Maps

Commercial Statistical 

dispatch

Proprietary On-demand 

global

Short-run WattTime Commercial Statistical 

emissions

Proprietary U.S., Canada, 

Europe, 

Australia

Short-run AVERT Government Statistical 

dispatch

Public Contiguous 

U.S.

Short-run eGRID Government Non-baseload Public U.S.

Long-run NREL 

Cambium

Government Simulation Public Contiguous 

U.S.
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Calculating MEFs requires a solid understanding 
of power system dynamics, access to large 
amounts of data, and the application of data 
science, statistical, or modeling techniques. Most 
energy customers use pre-calculated MEFs rather 
than conducting their own bespoke modeling 
of marginal emissions impact. It is nevertheless 
helpful for a consumer of these data to have at 
least a basic understanding of the methodologies 
and assumptions behind the data to evaluate the 
quality of each MEF and to apply them correctly. 

The primary challenge of calculating MEFs is 
that they attempt to quantify a counterfactual: 
how different would grid-wide emissions be if 
a hypothetical intervention occurs versus if it 
doesn’t occur. MEFs do not represent measured 
emissions reductions; rather, they represent 
estimates derived from the difference between 
baseline and counterfactual emission scenarios. 
Over the past several decades, many different 

methodologies have been developed to estimate 
the marginal impact of an intervention on the 
grid. These methods have evolved in response 
to the amount of data that is available about the 
grid and emissions, evolving market structures, 
and generator fleet composition. 

There is tremendous variation in the way 
that MEFs can be estimated. Depending on 
the specific methodology, data sources, and 
assumptions used, no one estimate is likely to 
match another. Even two approaches using the 
same methodology could use different input data 
or assumptions to estimate marginal emissions 
impact, leading to two different and sometimes 
inconsistent estimates.1,2 This means that there is 
no single source of “truth” for marginal emissions 
impact. However, several characteristics may be 
used to evaluate the relative quality of different 
factors based on the methodologies and 
assumptions they use:3 

HOW ARE MARGINAL EMISSIONS 
FACTORS CALCULATED?

01

02

The method should minimize the number of assumptions and rely on measured data as much  
as possible. For example, one common assumption made by all methods is which generator  
fuel types can respond to an intervention. Some methods assume that only a single fuel type  
(often natural gas) can be on the margin, that only generators above a certain size (generally  
25 MW) can be on the margin, or that only fossil fuel-based generators can be on the margin. 
As we can see from the data in Figure 1, these assumptions are likely not very accurate: a wide 
variety of resources, including renewables and energy storage, can be marginal. This assumption 
is important, because if a method assumes that only fossil fuels are marginal, it means that it can 
only send a signal about whether to use cleaner fossil fuels, rather than whether to use  
clean energy.

The factor should be available at a high temporal resolution (at least hourly) to account for 
variability in emission rates from period to period. The generator on the operating margin can, 
and often does, change every five minutes, and differences in the availability of certain resources, 
especially renewables, throughout the day mean that the factor needs to be able to reflect this 
variability.4 This is particularly important if you are trying to dynamically optimize emissions in  
real time.
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In this section, we summarize the seven 
categories of methods that are used to  
estimate MEFs, and highlight the strengths  
and limitations of each.

The non-baseload approach attempts to 
identify which generators are least likely to be 
baseload generators, and thus more likely to be 
able to respond to changing load. This is done by 
examining the capacity factor of each generator 
(the ratio of actual generation to maximum 
generation capacity): baseload generators 
generally operate at a high capacity factor, near 

their maximum output level, so cannot respond 
to changes in demand.5–7 Generators that operate 
at low capacity factors are thus more likely to 
be “load following” or “peaker” plants that can 
ramp up or down in response to changing load. 
This method is most applicable to calculating 
operating or short-run factors. Although 
non-baseload MEFs are useful for first-order 
approximations of marginal impact, they are 
currently published only at the annual resolution 
as part of the EPA’s eGRID database and may not 
be as precise as other estimates.

03 The method should account for the physical flows of electricity, including import and export of 
electricity between regions, and transmission constraints within regions. Because regions often 
exchange electricity with one another, imported generation could be the source of marginal 
emissions. Likewise, because there are sometimes transmission constraints within grid regions 
that prevent electricity from freely flowing from one part of a region to another, different 
parts of the same region may be served by different marginal generators. Thus, methods that 
ignore inter-regional interchange or intra-regional congestion may not accurately represent 
the marginal emissions impact of an intervention. Consumers of these data should note that 
while creating factors for smaller geographic regions is one strategy to address this, factors that 
represent smaller regions are not necessarily more accurate than those that represent larger 
regions. What is important is that they represent the topology and power flow of the grid.
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Merit order or load duration curve analysis 
simulates the economic dispatch of generators 
in real-time markets by creating a supply stack 
of generators ordered from lowest to highest 
marginal cost and identifying the marginal 
generator by determining where the demand 
curve intersects this supply curve.7–15 A limitation 
of this method is that precise merit order or 
economic dispatch is often not observed in 
practice because of transmission constraints, 
plant operating constraints, and market 
structures.16 In addition, this method cannot be 
used to estimate long-run factors because it 
assumes that the generation stack is fixed.

In wholesale power markets, locational 
marginal prices (LMPs) describe the marginal 
cost of wholesale electricity at each node on 
the grid. Because LMPs are already locational 
and marginal, and are available in real time, 
the locational marginal price-based method 
uses LMPs as a proxy for locational marginal 

emissions. This method depends on the 
assumption that LMPs are correlated with 
the fuel consumption, and thus emissions of 
the marginal generator.17–20 The idea is that 
the price that a generator bids into a market 
(which becomes the LMP if that generator is 
marginal) mostly reflects that generator’s variable 
operating cost, which is primarily the cost of fuel. 
However, this method works best when there 
is primarily a single marginal fuel type (such as 
natural gas or coal) in real-time markets, which 
is not always the case (see Figure 1). Because 
this method relies on real-time market data, it is 
inherently an operating marginal emission rate. 

Statistical methods are a broad class of 
approaches that use regression, econometric, 
or machine learning techniques to estimate 
marginal emissions based on observed historical 
data. Instead of explicitly modeling power 
system operations and market processes, these 
statistical methods observe the correlation 

Fuel on the Operating Margin in 2018
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FIGURE 1: 
U.S. annual power sector CO2e emissions resulting from each decarbonization pathway and combination of 
pathways evaluated

7



between historical dispatch or emissions patterns 
and natural variations in load or generation 
throughout the day.16 Because they are based 
on the observed historical response of a power 
system to fluctuations in load, MEFs derived from 
statistical methods are only valid for time periods 
in which the power system is structurally the 
same as the historical period used to train the 
model. The particularly rapid changes that the 
grid has been undergoing over the past decade 
can limit the accuracy of statistical methods as 
you look further into the future, because the 
historical data the models were trained on can 
become outdated rapidly. Another limitation is 
that while these methods are good at assessing 
correlation, assessing the causality between an 
intervention and the emissions outcome is not 
always possible, even when causal inference 
methods are employed. These methods come 
in two main varieties depending on how they 
approach the estimation of marginal response: 
Statistical dispatch methods observe historical 
generator dispatch data to predict which 
generators will be dispatched in response to 
marginal changes in net load.21 Statistical 
emissions methods are based on regressing 
changes in systemwide emissions on changes 
in load or generation, and using the slope of that 
line as the marginal emissions rate.1,16,22–32 

The simulation or modeling methodology is 
perhaps the oldest and most flexible method for 
estimating different types of marginal emissions. 
It is the only method that can be used to produce 
long-run marginal emission rates and explicitly 
model the future. It uses different types of 
models to simulate the marginal response of the 
system to a specific intervention over different 
timescales. These sophisticated engineering 
models are generally some combination of 
optimal power flow, security-constrained 
economic dispatch, and capacity expansion 
models, which consider not only the marginal 
cost of generators, but factors such as power 
flow, transmission constraints, policy constraints, 
reliability constraints, and other grid stability 
factors.33–38 Generally, these models are what 
grid planners use to make capacity investment 

decisions to maintain the reliability of the grid 
and what ISOs use to clear wholesale power 
markets and dispatch generation in real time. 
These methods determine the marginal impact 
of an intervention by first simulating a baseline 
scenario, then making the change represented 
by the intervention and re-solving the simulation, 
and finally taking the difference between the 
two scenarios. The primary limitations of this 
approach are that it is computationally heavy, 
requires a lot of data, and is generally not 
accessible to many users. Another limitation 
is that the results can be sensitive to the 
peculiarities of the specific simulation or model 
assumptions being used. Consequently, users of 
these estimates should consider factors based 
on multiple scenarios that represent different 
assumptions or uncertainties about the future 
being modeled.

Finally, the operator-reported approach relies 
on data reported by ISOs or other grid operators 
that identify the fuel type(s) or emission rate of 
the actual marginal generator(s) that cleared 
the wholesale power market at any given time. 
These marginal units are identified by the ISO’s 
own market clearing processes (which uses the 
simulation/modeling methodology described 
above), which can then be assigned a generator-
specific emission rate. Several U.S. ISOs, including 
MISO, SPP, and ISONE, regularly publish data 
about the fuel types of the marginal units in each 
real-time market interval.39–41 In combination 
with data about generator-specific or fleet-
specific emission rates, a MEF can be estimated. 
Other ISOs, including PJM and ISONE, publish 
the marginal emission rate of these marginal 
generators.42,43 Although some see these data 
as a gold standard for marginal emissions 
data because they take the guesswork out of 
identifying the marginal generators, some grid 
operators do not recommend using them directly 
to make decisions or predict consequential 
emission response.4 However, using these data to 
validate the assumptions and estimates of other 
methods is a new, exciting opportunity to further 
improve the quality of other methods discussed 
previously. 
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MEFs have certain fundamental limitations 
regardless of the quality of the methodology 
or assumptions used to estimate them. 
Understanding these limitations is important for 
accurately applying MEFs and communicating 
the impacts they estimate.

Pre-calculated MEFS are “one-size-
fits-all” even if the impacts are not

Each type of intervention, such as a solar array, 
a utility-scale battery, or an electric vehicle, 
has a unique net demand profile. In reality, the 
consequential impact of each intervention is the 
system’s response to the specific shape of an 
intervention across multiple time intervals, rather 
than just a series of independent responses to 
the intervention in each interval. For example, 
the specific shape of a project activity could 
impact the ramping or minimum run time of 
marginal generators, affecting the consequential 
emissions impact.22,34 Because pre-calculated 
MEFs are designed to be applied universally, 
they are limited in this regard because they 
treat each time interval as independent and do 
not reflect the specific consequential emissions 
impact of each intervention’s unique shape.7 In 
addition, many pre-calculated MEFs are designed 
to be applied universally to either demand-
side or generation-side interventions. However, 
the different shapes of these resources mean 
that different types of marginal resources may 
respond.28 To get around this limitation, one 
would have to conduct a bespoke modeling 
effort for each project activity and the system 
response to each specific shape.  

A more practical solution for decision-making 
would be for carbon data providers to provide 
supply-specific or demand-specific marginal 
emissions factors for each type of project 
activity.7 

All MEFs involve some uncertainty

The consequential impact should never be 
thought of as a single value, but rather as a 
range of potential impacts. As explained above, 
marginal emissions data is never exact, and no 
two methodologies are likely to ever arrive at 
the same MEF, partially because of the lack of 
standardization. If each estimate points to similar 
consequential emissions outcomes, you can 
be more certain in a recommendation than if 
different estimates point to different outcomes. 

MEFS are only relevant to a 
specific time period

MEFs are only valid for a specific time period. For 
example, some factors may only be applicable 
to a single five-minute period, while others 
may provide some predictive insights into 
consequential emissions response at a general 
time of day, or for some range of time into the 
future. Factors should only ever be applied to the 
time(s) to which they are relevant. For example, if 
you only have access to short-run factors but are 
trying to evaluate the consequential emissions 
impact of a 20-year solar PPA, you might be able 
to estimate the avoided emissions impact for the 
first year of the solar plant’s operation, but not for 
its entire lifetime. 

CONSIDERATIONS WHEN USING 
MARGINAL EMISSIONS FACTORS
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APPENDIX: DETAILED COMPARISON 
OF MARGINAL EMISSIONS RATE DATA

This appendix presents more detailed 
information about each of the major sources 
of marginal emissions data. These sources are 
presented in alphabetical order. Each table 
was completed based on publicly available 
information and survey responses from each of 
the data providers and is current as of  
September 2022. 

For each of these data sources, information is 
provided for three categories of data: historical, 
real-time, and forecasted. This paper defines 
these categories as follows:

We note that these categories describe how the 
data are released, but not necessarily how they 
must be used. For example, some “historical” 
data may be relevant to estimating consequential 
emissions impacts in the near future, or some 
“real time” data, if archived, can be used for 
analysis of past activities.

• Historical data: data that represent the marginal 
emissions rate in a time period that occurred in the past 
or which are not linked to a specific date/time but are 
estimated using historical data.

• Real-time data: data that are provided on a continuous 
basis (typically via an API) for a period occurring within 
an hour of the data being released. These data are 
generally operating marginal emissions rates intended 
for use in algorithms that optimize decisions in real time.

• Forecasted data: data that are forecasted for a specific 
date/time in the future, based on anticipated power 
system conditions at that time.

10



AVERT
Data Provider: U.S. Environmental Protection Agency
Data Product: Avoided Emissions and Generation Tool (AVERT)
Website
Link to access data

Factor type Short-run

Methodological approach Statistical dispatch

Pollutant types included CO2, NOx, SO2, PM2.5, NH3, and VOC

Input data used in calculations
EPA Continuous Emissions Monitoring System (CEMS) and National 
Emissions Inventory (NEI)

Link to documentation about 
methodology

https://www.epa.gov/avert/how-avert-works
https://www.epa.gov/avert/avert-user-manual

Link to external peer review or 
validation of estimates

“Assessing the Emission Benefits of Renewable Energy and Energy 
Efficiency using EPA’s AVoided Emissions and geneRation Tool 
(AVERT)” (Note: Synapse Energy Economics, which developed this 
report, is the consultant that originally developed the AVERT model for 
the EPA.)

Approach to considering power flow 
between and within regions

Does not account for imports/exports between regions

Assumptions about what resources 
can be marginal

Fossil-only generators with capacity > 25 MW

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost Public/Free N/A N/A

Data format Excel file N/A N/A

Geographic coverage Continental U.S. N/A N/A

Geographic resolution
“AVERT Regions” 
generally aligning with 
ISO boundaries

N/A N/A

Temporal coverage 2007–2021 N/A N/A

Temporal resolution Hourly N/A N/A

Data release lag 1–2 years N/A N/A
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https://www.epa.gov/avert
https://www.epa.gov/avert/download-avert
https://www.epa.gov/avert/how-avert-works
https://www.epa.gov/avert/avert-user-manual
https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/deyoung.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/deyoung.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/deyoung.pdf


CAMBIUM 
Data Provider: U.S. National Renewable Energy Laboratory (NREL)
Data Product: Cambium Long-Run Marginal Emission Rate (LRMER) and Short-Run Marginal Emission Rate 
(SRMER)
Website
Link to access data

Factor type Long-run and short-run

Methodological approach Simulation (Capacity Expansion/Production Cost Model)

Pollutant types included CO2, CH4, N2O, CO2e

Input data used in calculations
NREL Annual Technology Baseline
Weather data
National Energy Modeling System

Link to documentation about 
methodology

https://www.nrel.gov/docs/fy22osti/81611.pdf

Link to external peer review or 
validation of estimates

“Planning for the evolution of the electric grid with a long-run 
marginal emission rate“

Approach to considering power flow 
between and within regions

Simulates interchange between regions

Assumptions about what resources 
can be marginal

Any generator can be marginal. Generators that don’t create energy 
(batteries, pumped hydro) are identified, but their contribution is 
replaced with an estimate of the original source energy from which they 
would have charged.
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https://www.nrel.gov/analysis/cambium.html
https://cambium.nrel.gov/
https://www.nrel.gov/docs/fy22osti/81611.pdf
https://www.sciencedirect.com/science/article/pii/S2589004222001857
https://www.sciencedirect.com/science/article/pii/S2589004222001857


DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost N/A N/A Public/Free

Data format N/A N/A Excel file, CSV

Geographic coverage N/A N/A Contiguous U.S.

Geographic resolution N/A N/A

“Generation and 
Emission Assessment 
Regions” (i.e., our 
approximation of eGRID 
regions). If the data are 
downloaded through the 
viewer, there are other 
geographic resolutions: 
states, national, and 
134 “balancing areas” 
covering the contiguous 
United States. 

Temporal coverage N/A N/A 2022–2050, even years

Temporal resolution N/A N/A

Hourly. If downloaded 
through the viewer, 
month-hour, time-of-day, 
and annual aggregations 
are also available. 

Data release lag N/A N/A N/A

CAMBIUM: CONTINUED
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CARBONARA 
Data Provider: Singularity Energy
Data Product: Carbonara
Website
Link to access data

Factor type Operating (Singularity plans to add margin factors in Q2 2022.)

Methodological approach

Currently implements two models: Operator-provided for regions where 
the ISO publishes marginal fuel data and a derivative-based statistical 
model for other regions. Carbonara is model-agnostic and hosts 
multiple marginal models for many regions and expects to add more in 
the future.

Pollutant types included CO2

Input data used in calculations
EIA Hourly Electric Grid Monitor
ISO-provided data
EPA eGRID database

Link to documentation about 
methodology

API Documentation

Link to external peer review or 
validation of estimates

None publicly available

Approach to considering power flow 
between and within regions

The dispatch-based model depends on specific ISOs’ treatment of 
imports/exports. The statistical model currently does not include import 
and export but can be easily extended using a “multi-region input 
output model.”

Assumptions about what resources 
can be marginal

For a dispatch-based model, it’s based on whatever resources the grid 
operator identifies as being marginal in real-time energy markets. 
For a statistical model, we assume certain baseload fuels (depending on 
the region) cannot be marginal.
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DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost

Up to 500 API requests 
per month free, 
otherwise need to pay 
software-as-a-service 
(SaaS) monthly fee

Up to 500 API requests 
per month free, 
otherwise need to pay 
SaaS monthly fee

Up to 500 API requests 
per month free, 
otherwise need to pay 
SaaS monthly fee

Data format API API API

Geographic coverage

~80 balancing 
authorities covering all 
of the continental United 
States and parts of 
Canada

9 major ISOs in the U.S. 
and Canada

8 major ISOs in the U.S. 
and Canada

Geographic resolution
Balancing areas, 
subregions available for 
some areas

Balancing areas, 
subregions available for 
some areas

Balancing areas, 
subregions available for 
some areas

Temporal coverage
Back to 2018, older data 
available upon request

Current 5-minute real-
time operating period

2 hours ahead for 5 
minute forecasts, 24 
hours ahead for hourly 
forecasts

Temporal resolution
5 minutes or 1 hour, 
depending on the region

5 minutes or 1 hour, 
depending on the region

5 minutes or 1 hour

Data release lag
Same as real-time for 
major ISOs, ~24 hours for 
other regions

Varies by region, 
generally under 5 
minutes

Same as real-time

CARBONARA: CONTINUED 
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EGRID 
Data Provider: U.S. Environmental Protection Agency (EPA)
Data Product: eGRID non-baseload emission factor
Website
Link to access data

Factor type Short-run

Methodological approach Non-baseload

Pollutant types included CO2, CH4, N2O, NOx, SO2, CO2e

Input data used in calculations
EPA Continuous Emissions Monitoring System (CEMS)
U.S. EIA Form 860

Link to documentation about 
methodology

https://www.epa.gov/egrid/egrid-technical-guide

Link to external peer review or 
validation of estimates

None publicly available

Approach to considering power flow 
between and within regions

Estimates available for different regional aggregations which may 
capture the effects of interchange across borders

Assumptions about what resources 
can be marginal

Only fossil or biomass power plants can be marginal

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost Free/public N/A N/A

Data format Excel file N/A N/A

Geographic coverage United States N/A N/A

Geographic resolution
Balancing Area, State, 
NERC Region, and eGRID 
subregion

N/A N/A

Temporal coverage

2004–2020, published for 
even years 2004–2018, 
since 2018 has been 
published annually

N/A N/A

Temporal resolution Annual N/A N/A

Data release lag 1–2 years N/A N/A
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ELECTRICITY MAPS 
Data Provider: Electricity Maps 
Data Product: Electricity Maps
Website
Link to access data

Type of marginal emission rate Short-run (estimates dispatch changes in the day-ahead market)

Methodological approach Statistical dispatch

Pollutant types CO2e

Input data used for calculations
Generation, import, and load data
Electricity market data
Weather data

Link to documentation of 
methodology

https://www.tmrow.com/blog/marginal-carbon-intensity-of-
electricity-with-machine-learning/

Link to external peer review or 
validation of estimates

None publicly available

How is power flow accounted for
Uses “flow tracing“ method described in peer-reviewed academic 
literature to account for imports and exports

Assumptions about what resources 
can be marginal

Assumes wind and solar can never be on the margin

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost
Behind paywall (1 month 
free trial available)

Behind paywall (1 month 
free trial available)

Behind paywall 

Data format CSV or Excel API API

Geographic coverage
Global but on-demand 
for marginal

Global but on-demand 
for marginal

Global but on-demand 
for marginal

Geographic resolution Grid balancing area Grid balancing area Grid balancing area

Temporal coverage
Up to 6 years in the past 
depending on the region

N/A
Up to 24 hours in the 
future

Temporal resolution Hourly Hourly or less Hourly

Data release lag Unknown < 2 hours
Updated every 15 
minutes
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PJM 
Data Provider: PJM Interconnection 
Data Product: Marginal Emission Rate
Website
Link to access data

Factor type Operating

Methodological approach Operator-reported

Pollutant types included CO2, SO2, NOx

Input data used in calculations
PJM Network Model
Bids and offers

Link to documentation about 
methodology

https://www.pjm.com/-/media/etools/data-miner-2/marginal-
emissions-primer.ashx

Link to external peer review or 
validation of estimates

None publicly available

Approach to considering power flow 
between and within regions

Imports are modeled but assumed to have a marginal emission rate of 0

Assumptions about what resources 
can be marginal

Any resource can be marginal

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost Public/Free Public/Free N/A

Data format API or CSV file download API or CSV file download N/A

Geographic coverage PJM PJM N/A

Geographic resolution LMP Load Nodes LMP Load Node N/A

Temporal coverage 2 years
Real-time operating 
interval

N/A

Temporal resolution 5 minutes 5 minutes N/A

Data release lag 5 minutes 5 minutes N/A
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RESURETY 
Data Provider: REsurety 
Data Product: Locational Marginal Emissions (LME)
Website
Link to access data

Factor type Operating

Methodological approach Statistical dispatch

Pollutant types included CO2

Input data used in calculations

Transmission network data (shift factors and constraints)
Offers and LMP data
Resource node mappings
Fossil emission rates

Link to documentation about 
methodology

https://resurety.com/solutions/locational-marginal-emissions/

Link to external peer review or 
validation of estimates

None publicly available 

Approach to considering power flow 
between and within regions

Transmission network is modeled between nodes using shift factors 
as published by market operators or derived from market operator-
published data

Assumptions about what resources 
can be marginal

Our methodology assumes that resources whose offer prices are equal 
to or very close to nodal LMP are able to be marginal. This includes fossil 
resources and curtailed renewable resources.
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RESURETY: CONTINUED

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost Subscription service N/A N/A

Data format

API, Excel reports. Data 
will be included in 
REmap and interactive 
dashboards in coming 
months.

N/A N/A

Geographic coverage
ERCOT and PJM (CAISO, 
MISO, and other markets 
coming soon)

N/A N/A

Geographic resolution Wholesale pricing node N/A N/A

Temporal coverage January 2018–present N/A N/A

Temporal resolution Hourly N/A N/A

Data release lag 60–90 days N/A N/A
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SGIP SIGNAL 
Data Provider: WattTime/California Public Utilities Commission 
Data Product: Self-Generation Incentive Program (SGIP) Signal
Website
Link to access data

Factor type Operating

Methodological approach LMP-Based

Pollutant types included CO2

Input data used in calculations LMP, Gas Price, CO2 Price Data

Link to documentation about 
methodology

https://www.ethree.com/wp-content/uploads/2017/01/20160801_E3_-
Avoided_Cost-2016-Interim_Update.pdf

Link to external peer review or 
validation of estimates

None publicly available

Approach to considering power flow 
between and within regions

Interchange not considered

Assumptions about what resources 
can be marginal

Either natural gas plants or renewable plants
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SGIP SIGNAL: CONTINUED 

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost Public/Free Public/Free Public/Free

Data format CSV files or API API API

Geographic coverage

California and parts 
of bordering states 
(PacifiCorp West, NV 
Energy, WAPA Lower 
Colorado)

California and parts 
of bordering states 
(PacifiCorp West, NV 
Energy, WAPA Lower 
Colorado)

California and parts 
of bordering states 
(PacifiCorp West, NV 
Energy, WAPA Lower 
Colorado)

Geographic resolution
Balancing areas and 
subregions

Balancing areas and 
subregions

Balancing areas and 
subregions

Temporal coverage 2017–Present
Real-time 5 minute 
period

72 hours ahead for 
5-minute data; also long-
term forecasts available 
up to a year ahead for 
monthly time of day 
percentiles

Temporal resolution 5 minutes 5 minutes 5 minutes

Data release lag None
Available 2–3 minutes 
ahead

N/A
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Factor type Short-run

Methodological approach Statistical

Pollutant types included CO2

Input data used in calculations

Real-time data from individual grid operators
EIA Hourly Electric Grid Monitor
EPA Continuous Emissions Monitoring System
Renewable Energy Curtailment datasets

Link to documentation about 
methodology

https://www.watttime.org/marginal-emissions-methodology/

Link to external peer review or 
validation of estimates

None publicly available

Approach to considering power flow 
between and within regions

Model considers power flows between regions

Assumptions about what resources 
can be marginal

Any resource can be marginal

WATTTIME 
Data Provider: WattTime 
Data Product: Marginal Operating Emission Rate (MOER)
Website
Link to access data
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WATTTIME: CONTINUED

DATA 
CHARACTERISTICS HISTORICAL DATA REAL-TIME

DATA
FORECASTED

DATA

Data access/cost

Behind paywall (free 
access for single grid 
subregion CAISO_
NORTH)

Behind paywall (free 
access for single grid 
subregion CAISO_
NORTH)

Behind paywall (free 
access for single grid 
subregion CAISO_
NORTH)

Data format API API API

Geographic coverage
Continental U.S., Canada 
(partial), Western Europe 
(partial), Australia

Continental U.S., Canada 
(partial), Western Europe 
(partial), Australia

Continental U.S., Canada 
(partial), Western Europe 
(partial), Australia

Geographic resolution
Balancing Authority (or 
BA subregions for certain 
BAs)

Balancing Authority (or 
BA subregions for certain 
BAs)

Balancing Authority (or 
BA subregions for certain 
BAs)

Temporal coverage
2 years of history from 
current month

Current 5-minute real-
time operating period

72 hours ahead

Temporal resolution 5 minute 5 minute 5 minute

Data release lag

1 month (updated on 
2nd day of each month 
at midnight UTC for the 
previous month)

None (updated every 5 
minutes)

N/A (released every 5 
minutes)
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