

Assessing GHG Impacts of New Renewable Energy Projects

May 19, 2021 - 1 PM ET

Maya Kelty Director 3Degrees

Megan Lorenzen Sustainability Manager

Salesforce

Fiona Li Associate REBA

Thank you to RVMS Sponsors

Overview

Goal: Empower you to increase the emissions impact of your renewable energy procurement.

Help you understand which renewable energy projects are most likely to have the greatest decarbonization impact on the grid:

- 1. Scope 2 accounting vs accounting for grid impact
- 2. Calculating emissions impact
- 3. Review four available data sets

Maximizing Impact on Grid Decarbonization

Quantifying carbon reduction in scope 2

- Inventory or attributional accounting
- Allocate, or attribute, emissions based on a defined inventory boundary
- All renewable energy purchasing has equal benefit (zero emissions

Comparing 1,000,000 MWh from 3 locations			
Project Description	Scope 2 Reporting		
Texas wind	0 MT co2e / year		
California solar	0 MT co2e / year		
Kansas wind	0 MT co2e / year		

Maximizing Impact on Grid Decarbonization

Quantifying carbon reduction on grid

- Intervention or consequential accounting
- Establish boundary based on emissions impact of activity
- Renewable energy projects will have different GHG benefit based on location

Comparing 1,000,000 MWh from 3 locations			
Project Description	Scope 2 Reporting	Carbon Reduction	
Texas wind	0 MT co2e / year	573,000 MT co2e / year	
California solar	0 MT co2e / year	343,000 MT co2e / year	
Kansas wind	0 MT co2e / year	789,000 MT co2e / year	

Source: WattTime -- Richardson, H. and Evans, M. (2018). Avoided Emissions Assessment of Three Renewable Energy Projects.

Intervention Accounting: "Marginal Resource"

- Carbon impact on the grid is based on "marginal resource" in region
- Reflects how load would be met in absence of ("must run") RE project - i.e. the "displaced" resource
- Establishing "marginal resource" is not strictly economic – varies based on hour, season, other grid factors

Incorporating GHG Impact into Procurement

Buyer's Perspective

More Than a Megawatt: Embedding Social & Environmental Impact in the Renewable Energy Procurement Process

Incorporating GHG Impact into Procurement

Option A: Buy zero-emissions MWh \rightarrow procurement today

- Buy zero emissions renewable electricity to zero out scope 2
- Make general marketing claims on avoided emissions ("The generation we support avoids emission equivalent to taking 100 cars off the road") using EPA GHG Calculator

Option B: Incorporate avoided emissions into procurement \rightarrow this presentation

- Establish a cost bound and, within this bound, prioritize projects that have biggest impact on emissions
- e.g. Beyond the MW procurement matrix

Option C: Goals centered on avoided emissions \rightarrow to explore

- Develop a procurement framework to offset your electricity emissions with "verified emissions reductions"
- Note: this may result in under-achieving conventional carbon footprint accounting

Available Data and Tools

Available Data and Tools: eGRID

Data	Description	Ideal Use	Limitations
Annual generation data from EIA is matched with annual emissions data from EPA's Clean Air Markets Division (CAMD)	The data set provides an estimate of marginal emissions rate in each NERC subregion in a given data year	Basic understanding of sub-region with highest marginal rate Used for avoided	Cannot consider generation profile Does not provide granular (hourly) data
Generators are assigned to baseload or marginal based on capacity factor	Assumes that generators that were used at fractions of capacity are marginal	emissions claims Industry standard data set for average emissions	Weaknesses of capacity factor methodology

Available Data and Tools: AVERT

Data	Description	Ideal Use	Limitations
Hourly generation data and hourly emissions data from a single year from CAMD. Generator operations under specific load conditions are statistically estimated through	Matches the hourly load profile of the resource to determine the avoided emissions	Inform procurement decisions based on avoided emissions impact over next 5 years Three versions	Uses historical behavior to predict future behavior No granularity within regions
a Monte Carlo analysis to establish marginal emission rates. Predicts how each power plant is generating and emitting in each hour	Regional emissions factors available	(table, online, excel) Excel tool provides more flexibility (capacity factor, 8760 data, etc.)	5 years max

Available Data and Tools: AVERT

Available Data and Tools: AVERT

Results: Avoided Regional, State, and County-Level Emissions Annual Regional Displacements: Northwest Region Post-EE/RE Original **EE/RE Impacts** Generation (MWh) 132,302,160 131,200,340 -1,101,820 Total emissions of fossil EGUs SO₂ (lbs) 95,417,940 94.662.230 -755,700 NO_x (lbs) 144,287,390 143.134.550 -1,152,830 103,413,990 -819,730 CO₂ (tons) 104,233,730 PM25 (lbs) 10,942,010 10.850.140 -91.860 **Emission rates of fossil EGUs** SO2 (lbs/MWh) 0.721 0.722 NO_v (lbs/MWh) 1,091 1,091 CO₂ (tons/MWh) 0.788 0.788 PM2.5 (lbs/MWh) 0.083 0.083

Negative numbers indicate displaced generation and emissions. All results are rounded to the nearest ten. A dash ('-') indicates a result greater than zero, but lower than the level of reportable significance.

Annual State Emission Changes: Northwest Region

State	SO ₂ (lbs)	NO _x (lbs)	CO ₂ (tons)	PM _{2.5} (lbs)
Idaho	-260	-19,165	-30,744	-3,528
Montana	-156,579	-212,681	-99,076	-19,395
Nevada	-84,293	-81,862	-112,937	-14,931
Oregon	-156,148	-122,917	-115,426	-20,995
Utah	-114,388	-305,130	-156,404	-15,323
Washington	-53,034	-197,601	-178,936	-10,210
Wyoming	-191,002	-213,478	-126,217	-7,488

Monthly Emission Changes: Northwest Region

Select level of aggregation:
 Region
 State
 County

Select units:
 Emission changes (lbs or tons)
 Percent change

Available Data and Tools: WattTime

Data	Description	Ideal Use	Limitations
Hourly generation and emissions data from 3 years of CAMD, plus gen data from EIA and ISO	Matches the hourly load profile of the resource to determine the avoided	Inform procurement decisions based on avoided emissions impact over the next 5 years	Uses historical behavior to predict future
Statistical analysis is used to establish which generators were marginal in response to increases in RE. Creates hourly profile for each day of each month.	emissions Geographic granularity reflect balancing authorities	WattTime can provide data, run project analyses, draft reports, etc., and offers real time controls.	behavior Cost

Access: https://www.watttime.org/contact/

Available Data and Tools: WattTime

Available Data and Tools: Cambium

Data	Description	Ideal Use	Limitations
ReEDS projects evolution of bulk power sector and finds least cost solutions of grid build out given policy, existing fleet lifetime, price, etc.	The data set provide hourly and annual long-run marginal emissions rates (LRMER) under five scenarios (all assuming existing policy)	Inform avoided emissions that will result over 5+ years. Empirical models (WattTime, etc.) are more precise but only over short-term	Cost-minimizing perspective does not reflect irrational decision-making. New model (though feedback
PLEXOS simulates hourly operation of system projected by ReEDS	Seeks to predict how the grid will adapt to changes in load or generation	For hourly, user must have generation profile & analyze	has been positive) No criteria pollutants

Available Data and Tools: Cambium

Available Data and Tools: Cambium

Scenarios:

- High renewable energy cost
- Low battery cost >>
- Low Renewable Energy Cost
- Low Wind Cost
- Mid-case

Data sets for each scenario (2020-2050):

- Hourly state
- Hourly national
- Hourly balancing area
- Annual (state, national, BA)

Back to Dashboard

Standard Scenarios 2020 | Cambium Scenarios (Hourly and annual data)

The zip files below contain the data for each scenario at different geographic and temporal resolutions. Cambium produces hourly data at the balancing area (data_hourly_balancingAreazip), but we also provide hourly data aggregated to the state and national level (data_hourly_state.zip and data_hourly_national.zip) for convenience. The data_annual.zip file contains annual data at the balancing area, state, and national levels. The scenario_name.zip files contain all of the data for that scenario. For definitions and descriptions of the data in these files, see section 3 of the Cambium documentation. For descriptions of each of the scenarios, see the 2020 Standard Scenarios report. These files contain modeled data, which can differ from empirical data, as the models are simplifications of reality. Modeled data is not suitable for all types of analysis. We encourage users to review section 2 of the

Cambium documentation, which discusses the limitations of this data set.

Recommended Citation:

Gagnon, Pieter; Frazier, Will; Hale, Elaine; Cole, Wesley (2020): Cambium data for 2020 Standard Scenarios. National Renewable Energy Laboratory. https://cambium.nrel.gov/.

Ŧ	High Renewable Energy Cost	data_hourly_state.zip
Ŧ	High Renewable Energy Cost	data_annual.zip
Ŧ	High Renewable Energy Cost	data_hourly_balancingArea.zip
Ŧ	High Renewable Energy Cost	HighRECost.zip
Ł	High Renewable Energy Cost	data_hourly_national.zip
¥	Low Battery Cost	data_hourly_balancingArea.zip
¥	Low Battery Cost	data_hourly_national.zip
¥	Low Battery Cost	data_hourly_state.zip
Ł	Low Battery Cost	LowBatCost.zip
¥	Low Battery Cost	data_annual.zip

Available U.S. Data and Tools

Tool	Access	Description	Ease of use	ldeal use	Contact
eGRID	Free <u>EPA</u> Website	 + Annual generation from EIA + Annual emissions from EPA's Clean Air Markets Division (CAMD) 	Data easy to access; requires user to multiply rates by annual generation	Basic understanding of marginal emissions by sub-region	johnson.travis @epa.gov
AVERT	Free <u>EPA</u> Website	+ CAMD hourly generation + CAMD hourly emissions data	Versions meet user needs. Online tool: user inputs total capacity of resource (by type) and AVERT calculates annual avoided emissions. Excel tool: greater flexibility.	Inform procurement decisions, with 5-year view max	<u>avert@epa.gov</u>
WattTime	Contact <u>WattTime</u>	+ Hourly generation from CAMD, ISOs, and EIA + Hourly emissions from CAMD	For a fee, WattTime can provide data sets, provide avoided emissions of project(s), or deliver analysis reports	Inform procurement decisions, with 5-year view max	<u>henry@watttim</u> e.org
Cambium	Free <u>NREL</u> Website	 + ReEDS projects grid build out + PLEXOS stimulates hourly system operation 	Data easy to access; requires user to multiply rates by annual or hourly generation data	Inform procurement decisions for procurement 5+ years	<u>Pieter.Gagnon</u> <u>@nrel.gov</u>

Maximizing Grid Decarbonization

- Emissions benefit of a new renewable energy project varies by location and time
- Available data sets can be used to incorporate emissions impact into selection of new projects
- Additional areas to explore:
 - Additionality
 - Annual look-back on avoided emissions
 - An emissions-centric framework of procurement

Contact Information

Maya Kelty mkelty@3degreesinc.com Megan Lorenzen mlorenzen@salesforce.com

